For each data point, Mean shift associates it with
the nearby peak of the dataset’s probability density function. For each
data point, Mean shift defines a window around it and computes the mean
of the data point. Then it shifts the center of the window to the mean
and repeats the algorithm till it converges. After each iteration, we
can consider that the window shifts to a more denser region of the
dataset.
At the high level, we can specify Mean Shift as follows :
1. Fix a window around each data point.
2. Compute the mean of data within the window.
3. Shift the window to the mean and repeat till convergence.
Mean shift treats the points the feature space as an probability density function . Dense regions in feature space corresponds to local maxima or modes. So for each data point, we perform gradient ascent on the local estimated density until convergence. The stationary points obtained via gradient ascent represent the modes of the density function. All points associated with the same stationary point belong to the same cluster.
1. Even though mean shift is a non parametric algorithm , it does require the bandwidth parameter h to be tuned. We can use kNN to find out the bandwidth. The choice of bandwidth in influences convergence rate and the number of clusters.
2. Choice of bandwidth parameter h is critical. A large h might result in incorrect clustering and might merge distinct clusters. A very small h might result in too many clusters.
3. When using kNN to determining h, the choice of k influences the value of h. For good results, k has to increase when the dimension of the data increases.
4. Mean shift might not work well in higher dimensions. In higher dimensions , the number of local maxima is pretty high and it might converge to a local optima soon.
mean-shift-clustering
1. Fix a window around each data point.
2. Compute the mean of data within the window.
3. Shift the window to the mean and repeat till convergence.
Mean shift treats the points the feature space as an probability density function . Dense regions in feature space corresponds to local maxima or modes. So for each data point, we perform gradient ascent on the local estimated density until convergence. The stationary points obtained via gradient ascent represent the modes of the density function. All points associated with the same stationary point belong to the same cluster.
1. Even though mean shift is a non parametric algorithm , it does require the bandwidth parameter h to be tuned. We can use kNN to find out the bandwidth. The choice of bandwidth in influences convergence rate and the number of clusters.
2. Choice of bandwidth parameter h is critical. A large h might result in incorrect clustering and might merge distinct clusters. A very small h might result in too many clusters.
3. When using kNN to determining h, the choice of k influences the value of h. For good results, k has to increase when the dimension of the data increases.
4. Mean shift might not work well in higher dimensions. In higher dimensions , the number of local maxima is pretty high and it might converge to a local optima soon.
mean-shift-clustering
No comments:
Post a Comment