Nov 11, 2014

You and your research

  • Courage:
    • eg., 'One of the characteristics of successful scientists is having courage. Once you get your courage up and believe that you can do important problems, then you can. If you think you can't, almost surely you are not going to. Courage is one of the things that Shannon had supremely. You have only to think of his major theorem. He wants to create a method of coding, but he doesn't know what to do so he makes a random code. Then he is stuck. And then he asks the impossible question, ``What would the average random code do?'' He then proves that the average code is arbitrarily good, and that therefore there must be at least one good code. Who but a man of infinite courage could have dared to think those thoughts? That is the characteristic of great scientists; they have courage. They will go forward under incredible circumstances; they think and continue to think. '
  • Age: don't worry about the norm-'They always are saying that you have got to do it when you are young or you will never do it.'
    • eg., 'When you are famous it is hard to work on small problems. This is what did Shannon in. After information theory, what do you do for an encore? The great scientists often make this error. They fail to continue to plant the little acorns from which the mighty oak trees grow. They try to get the big thing right off. And that isn't the way things go. So that is another reason why you find that when you get early recognition it seems to sterilize you.'
  • Change viewpoint:
    • 'What appears to be a fault, often, by a change of viewpoint, turns out to be one of the greatest assets you can have. But you are not likely to think that when you first look the thing and say, ``Gee, I'm never going to get enough programmers, so how can I ever do any great programming?''
    • 'I think that if you look carefully you will see that often the great scientists, by turning the problem around a bit, changed a defect to an asset. For example, many scientists when they found they couldn't do a problem finally began to study why not. They then turned it around the other way and said, ``But of course, this is what it is'' and got an important result.'
  • Drive:
    • 'How can anybody my age know as much as John Tukey does?'' He leaned back in his chair, put his hands behind his head, grinned slightly, and said, ``You would be surprised Hamming, how much you would know if you worked as hard as he did that many years.'' I simply slunk out of the office! '
  • Neglect:
    • 'You have to neglect things if you intend to get what you want done. There's no question about this.'
  • WATCH OUT FOR MISAPPLICATION OF EFFORT
    • 'The misapplication of effort is a very serious matter. Just hard work is not enough - it must be applied sensibly.'
  • Tolerance for ambiguity:
    • 'But most great scientists are well aware of why their theories are true and they are also well aware of some slight misfits which don't quite fit and they don't forget it. Darwin writes in his autobiography that he found it necessary to write down every piece of evidence which appeared to contradict his beliefs because otherwise they would disappear from his mind.'
  • Subconsciously thinking about the problem:
    • 'creativity comes out of your subconscious.'
    • 'If you are deeply immersed and committed to a topic, day after day after day, your subconscious has nothing to do but work on your problem. And so you wake up one morning, or on some afternoon, and there's the answer. For those who don't get committed to their current problem, the subconscious goofs off on other things and doesn't produce the big result. So the way to manage yourself is that when you have a real important problem you don't let anything else get the center of your attention - you keep your thoughts on the problem.'
  • Working on the important problem in the field:
    • 'But the average scientist does routine safe work almost all the time and so he (or she) doesn't produce much. It's that simple. If you want to do great work, you clearly must work on important problems, and you should have an idea.'
  • Building on others work is important as well:
    • 'You should do your job in such a fashion that others can build on top of it, so they will indeed say, ``Yes, I've stood on so and so's shoulders and I saw further.'' The essence of science is cumulative. By changing a problem slightly you can often do great work rather than merely good work. Instead of attacking isolated problems, I made the resolution that I would never again solve an isolated problem except as characteristic of a class.'
  • Leave your door open while work
    • interruptions are good to bounce ideas off  
  • Selling:
    • 'Selling' to a scientist is an awkward thing to do. It's very ugly; you shouldn't have to do it. The world is supposed to be waiting, and when you do something great, they should rush out and welcome it. But the fact is everyone is busy with their own work. You must present it so well that they will set aside what they are doing, look at what you've done, read it, and come back and say, ``Yes, that was good.'' '
  • Reading others' work:
    • 'If you read all the time what other people have done you will think the way they thought. If you want to think new thoughts that are different, then do what a lot of creative people do - get the problem reasonably clear and then refuse to look at any answers until you've thought the problem through carefully how you would do it, how you could slightly change the problem to be the correct one. So yes, you need to keep up. You need to keep up more to find out what the problems are than to read to find the solutions. The reading is necessary to know what is going on and what is possible. But reading to get the solutions does not seem to be the way to do great research. So I'll give you two answers. You read; but it is not the amount, it is the way you read that counts.' 
  •  Reference

No comments:

Down with the Dictatorship!

    "Let them hate me, so that they fear me" - Caligula 41AD